Investigating the Effect of Dwell Time on the Physical Properties of Nano-sized Tin dioxide (SnO2) Prepared Through a Continuous Microwave Flow Process

Author:

Akram Muhammad

Abstract

Tin dioxide (SnO2) is a well-known catalytic material used to catalyze different organic dyes and gas sensors. Similarly, it is also considered a good sensing and optoelectronic material. In this work, SnO2 has been synthesized using a microwave-assisted continuous flow method. The effect of dwell time was utilized to study its effects on the physical properties of SnO2. X-ray Diffraction (XRD), Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM) and Bruner Emmit-Teller (BET) techniques were used to characterize the synthesized SnO2. UV-Visible spectroscopy technique was employed to calculate the energy bandgap, which exhibited a decrease in the energy bandgap from 3.44 to 3.33 eV on increasing the dwell time. XRD results exhibited an increase in the degree of crystallinity from 56 to 63% and a reduction in the particle size from 3.74 to 2.75 nm. Where, BET study revealed a shrinkage in the surface area from 159 to 154 m2g- 1. Photoluminescence (PL) study was conducted to investigate the surface defects. Photocatalytic efficiency of the SnO2 was probed against the photodegradation of methylene blue dye and this study revealed that SnO2 is a good photocatalytic material.

Publisher

National Centre of Excellence in Analytical Chemistry

Subject

Environmental Chemistry,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3