Affiliation:
1. College of Engineering Peking University Beijing China
2. School of Automation Science and Electrical Engineering Beihang University Beijing China
3. Science and Technology Commission China Aerospace Science and Technology Corporation Beijing China
Abstract
AbstractThe performance of the gimbal servo system in control moment gyro (CMG), which includes precision, lifespan etc., is one of the crucial factors of spacecraft attitude control. The various practical disturbances, however, will not only deteriorate the velocity‐tracking accuracy but will also cause the abnormal gimbal velocity problem (especially peak phenomenon). To this end, this paper proposes a refined anti‐disturbance control method to deal with velocity output constraints and multiple disturbances. Starting with fully understanding the prior information of multiple disturbances, a refined disturbance observer with a low conservativeness is designed to accurately estimate disturbances. The disturbance‐estimation error is analyzed in detail to ensure convergence to a bounded region. Subsequently, a novel barrier Lyapunov function‐based backstepping controller is proposed that considers the residuals of disturbance estimation to simultaneously achieve multiple disturbances attenuation and compensation, and handle velocity output constraints. Notably, the gimbal's maximum velocity is precisely limited to a pre‐specified low range, which benefits the CMG's lifespan and performance. Finally, both simulation and experimental results show that the proposed method performs better in disturbance estimation, velocity tracking, and robustness.
Funder
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献