Affiliation:
1. State Key Laboratory of Synthetical Automation for Process Industries Northeastern University Shenyang China
2. College of Information Science and Engineering Northeastern University Shenyang China
Abstract
AbstractPrecise timing plays a key role in the time‐sensitive industrial Internet of Things (IIoT). However, precise time synchronization requires more frequent packet exchange, which consumes more communication bandwidth and energy. This is a particular challenge in battery‐powered wireless nodes, and low communication costs have become an important factor in clock synchronization. To address the challenge of achieving low communication cost clock synchronization in distributed wireless sensor networks, this paper proposes an improved event‐triggered control and synchronization scheme with a novel asynchronous broadcast packet exchange protocol. Unlike the traditional event‐triggered control scheme which is based on synchronous polling packet exchange, this proposed asynchronous broadcast packet exchange is more communication efficient and requires fewer number of packet exchanges. And it is worth noting that the proposed algorithm in this paper is a distributed algorithm and does not require real‐time acquisition of information from neighbouring nodes. Finally, a numerical example is given to illustrate the effectiveness of the proposed event‐triggered control strategy. The efficiency and precision of the proposed clock synchronization method is evaluated by intensive simulations, which show that the number of packet exchange is reduced by 60% for a moderate IIoT network and is particularly useful for large scale network.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献