Optimal consensus control for multi‐agent systems: Multi‐step policy gradient adaptive dynamic programming method

Author:

Ji Lianghao1ORCID,Jian Kai1,Zhang Cuijuan1,Yang Shasha1,Guo Xing1,Li Huaqing2

Affiliation:

1. Chongqing Key Laboratory of Image Cognition Chongqing University of Posts and Telecommunications Chongqing China

2. College of Electronic and Information Engineering Southwest University Chongqing China

Abstract

AbstractThis paper presents a novel adaptive dynamic programming (ADP) method to solve the optimal consensus problem for a class of discrete‐time multi‐agent systems with completely unknown dynamics. Different from the classical RL‐based optimal control algorithms based on one‐step temporal difference method, a multi‐step‐based (also call n‐step) policy gradient ADP (MS‐PGADP) algorithm, which have been proved to be more efficient owing to its faster propagation of the reward, is proposed to obtain the iterative control policies. Moreover, a novel Q‐function is defined, which estimates the performance of performing an action in the current state. Then, through the Lyapunov stability theorem and functional analysis, the proof of optimality of the performance index function is given and the stability of the error system is also proved. Furthermore, the actor‐critic neural networks are used to implement the proposed method. Inspired by deep Q network, the target network is also introduced to guarantee the stability of NNs in the process of training. Finally, two simulations are conducted to verify the effectiveness of the proposed algorithm.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3