Autonomous Planning and Robust Control for Wheeled Mobile Robot With Slippage Disturbances Based on Differential Flat

Author:

Liu Yueyue1ORCID,Bai Keqiang2,Wang Haoyu1,Fan Qigao1ORCID

Affiliation:

1. School of Internet of Things Engineering Institute of Automation, Jiangnan University Wuxi China

2. Engineering Research Center of Integration and Application of Digital Learning Technology Ministry of Education, and also with the School of Information Engineering Southwest University of Science and Technology Mianyang China

Abstract

AbstractThis paper proposes a wheeled mobile robot (WMR) robust control scheme. The feasible strategy is developed to achieve an efficient and robust autonomous mobile robot motion. To realize kinematic autonomous planning and control of the WMR, a novel controller is designed based on control Lyapunov function. This part can be divided into the following two aspects: 1) considering the nonholonomic constraints in the autonomous mobile robot trajectory tracking, a dynamic feedback‐linearization is adopted by utilizing differential flatness‐based integrated control framework to achieve full‐state controllability; 2) to compensate the structured uncertainties and slippage disturbances related to the robot kinematic model, a robust controller is designed based on control Lyapunov function with quadratic programming. Such a strategy can achieve autonomous motion even with unknown slippage disturbances subject to various constraints. Moreover, the sufficient condition is also analyzed to ensure the WMR system exponential stability. The effectiveness and performance of the proposed method are verified by numerical simulation.

Funder

Ministry of Education of the People's Republic of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Control and Optimization,Computer Science Applications,Human-Computer Interaction,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3