3D path planning problem for fighter aircraft with multiple constraints

Author:

Yang Ping1ORCID,Xiao Bing1,Chen Xin1,Guo LiangLiang2

Affiliation:

1. People's Liberation Army Air Force Early Warning Academy Wuhan China

2. An Air Force Ammunition Brigade of the Chinese People's Liberation Army Changchun China

Abstract

AbstractPath planning is a crucial component for ensuring the safety and efficiency of flight missions, especially for fighter aircraft. To enhance the combat effectiveness of fighter aircraft, it is important to consider how to avoid danger sources an terrain obstacles, reduce fuel consumption, and utilize the aircraft's own performance to accomplish the mission objectives. In the modern battlefield environment, the shortest path is not the only criterion for planning, but also other factors such as the threat level to the aircraft, fuel consumption, mission completion time, and minimum turning radius. In this paper, the authors propose a multi‐constraint path planning method for fighter aircraft that incorporates these factors into an improved particle swarm algorithm. The authors transform the constraints of three‐dimensional terrain, threat source, fuel consumption, and mission time into an aggregated fitness function. The authors construct a limit curvature matrix to evaluate the feasibility of the generated path. The authors also introduce an adaptive adjustment strategy based on the activation function for the parameters in the particle swarm algorithm. The weights of each constraint are determined according to the actual demand. The experiment results show that the authors’ method can efficiently plan the optimal path that satisfies the requirements. Compared with other improved particle swarm algorithms, the authors’ method has higher optimal search efficiency and better convergence effect. The authors also provide optimal values for important parameters such as mission energy consumption, mission time, flight speed and others to support the overall mission planning. The authors’ method has a certain practical application value.

Publisher

Institution of Engineering and Technology (IET)

Subject

General Engineering,Energy Engineering and Power Technology,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3