Partial discharge fault identification method for GIS equipment based on improved deep learning

Author:

Hu Weitao1ORCID,Li Jianpeng1,Liu Xiaofei1,Li Guang1

Affiliation:

1. Substation Maintenance Center State Grid Hebei Extra High Voltage Company Shijiazhuang Heibei China

Abstract

AbstractAiming at the problems of large consumption of computational resources and insufficient data feature extraction in the current partial discharge fault identification process of GIS equipment, a partial discharge fault identification method of GIS equipment based on improved deep learning is proposed. Firstly, the audio information of GIS equipment is filtered by a simple power normalised cepstral coefficient (SPNCC). Secondly, the spatial correlation between audio data streams is obtained by a convolutional neural network, the temporal correlation of audio is obtained and the next time slice data stream is predicted by using bi‐directional long short‐term memory (BiLSTM) network, and the attention mechanism is designed to extract deeper data features. Finally, the partial discharge fault identification model of GIS equipment based on improved SPNCC‐CNN‐BiLSTM‐Multi‐att is established, which improves the accuracy of the partial discharge identification method of GIS equipment. Experiments show that when the number of iterations is 100, the accuracy, recall, and F1 value of the proposed GIS equipment partial discharge fault recognition method on the dataset are 0.876, 0.812, and 0.843, respectively.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3