Net saving improvement of capacitor banks in power distribution systems by increasing daily size switching number: A comparative result analysis by artificial intelligence

Author:

Sadeghian Omid1ORCID,Safari Ashkan1

Affiliation:

1. Faculty of Electrical and Computer Engineering University of Tabriz Tabriz Iran

Abstract

AbstractThis paper studies the effect of the number of switching (NOS) per day of capacitor banks on loss reduction in radial distribution systems. To this aim, the daytime (more precisely, 24 h) is divided into different numbers of time segments (equal to the same NOS) for capacitors’ size switching. The resulting non‐linear programming with discontinuous derivatives (called DNLP) model is solved subject to related constraints. The results reveal the impact of hourly switching of capacitor banks on further loss reduction (namely 118.4435, 83.7856, and 101.738 MWh for three IEEE systems) and higher net savings (i.e. k$5.6067, k$4.2772, and k$5.3542 for the same systems) of radial distribution systems compared to daily switching. Then, the hyper‐tuned Random Forest model is trained based on the IEEE 69‐bus network, fine‐tuned by the IEEE 10‐bus network, and fitted by the IEEE 33‐bus network to have an intelligent multi‐classification task with the highest accuracy. Numerical simulation, in both classic and intelligent parts, is presented to demonstrate the performance of DeepOptaCap. For the final step, DeepOptaCast is compared to other intelligent models of Light Gradient Boosting Method (LGBM), Decision Tree, and XGBoost, regarding KPIs of mean absolute percentage error, root mean squared percentage error, mean absolute error, root mean squared error, and coefficient of determination to demonstrate the model's superiority.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3