SOC estimation and fault identification strategy of energy storage battery PACK: Based on adaptive sliding mode observer

Author:

Xueyi Huang1,Tinglong Pan1ORCID

Affiliation:

1. School of Internet of Things Engineering Jiangnan University Wuxi Jiangsu China

Abstract

AbstractAccurate state of charge (SOC) estimation and fault identification and localization are crucial in the field of battery system management. This article proposes an innovative method based on sliding mode observation theory for SOC estimation and short‐circuit fault location. The core of this new method is the design of an adaptive sliding mode observer, which reduces jitter by introducing adaptive switching gain, establishes an internal loop of gain and error, and improves the performance of SOC estimation. In addition, recursive least squares method was used to identify the key parameters of the model. Secondly, based on obtaining the SOC of each battery cell in series with the energy storage PACK, the specificity of the faulty battery cell in SOC change trend is utilized to identify and locate the short‐circuit fault of the energy storage PACK. The simulation and test results show that the designed adaptive sliding mode observer can significantly improve the estimation accuracy of SOC and has better stability. Compared to the commonly used Kalman estimation and BP neural network estimation methods, the designed method has improved accuracy by 5.53% and 3.42%, respectively. In addition, based on the accurate identification of SOC, the short‐circuit fault diagnosis results of the battery PACK have a high accuracy, confirming the feasibility and effectiveness of the designed strategy that includes SOC estimation and short‐circuit fault identification and positioning, and has broad application prospects.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3