Machine learning modelling for predicting the utilization of invasive and non‐invasive ventilation throughout the ICU duration

Author:

Schwager Emma1,Nabian Mohsen2ORCID,Liu Xinggang3,Feng Ting1,French Robin4,Amelung Pam4,Atallah Louis4,Badawi Omar5

Affiliation:

1. Philips Research North America Cambridge Massachusetts USA

2. Philips Clinical AI and Analytics New Brunswick New Jersey USA

3. Johnson and Johnson Limited New Brunswick New Jersey USA

4. Philips EMR & Care Management Cambridge Massachusetts USA

5. Trial Library San Francisco California USA

Abstract

AbstractThe goal of this work is to develop a Machine Learning model to predict the need for both invasive and non‐invasive mechanical ventilation in intensive care unit (ICU) patients. Using the Philips eICU Research Institute (ERI) database, 2.6 million ICU patient data from 2010 to 2019 were analyzed. This data was randomly split into training (63%), validation (27%), and test (10%) sets. Additionally, an external test set from a single hospital from the ERI database was employed to assess the model's generalizability. Model performance was determined by comparing the model probability predictions with the actual incidence of ventilation use, either invasive or non‐invasive. The model demonstrated a prediction performance with an AUC of 0.921 for overall ventilation, 0.937 for invasive, and 0.827 for non‐invasive. Factors such as high Glasgow Coma Scores, younger age, lower BMI, and lower PaCO2 were highlighted as indicators of a lower likelihood for the need for ventilation. The model can serve as a retrospective benchmarking tool for hospitals to assess ICU performance concerning mechanical ventilation necessity. It also enables analysis of ventilation strategy trends and risk‐adjusted comparisons, with potential for future testing as a clinical decision tool for optimizing ICU ventilation management.

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3