Electrical impedance tomography image reconstruction for lung monitoring based on ensemble learning algorithms1

Author:

Al‐Bashir Areen K.1ORCID,Al‐Bataiha Duha H.1,Hafsa Mariem2,Al‐Abed Mohammad A.2,Kanoun Olfa3

Affiliation:

1. Biomedical Engineering Department Jordan University of Science and Technology Irbid Jordan

2. Biomedical Engineering Department Hashemite University Zarqa Jordan

3. Measurement and Sensor Technology Chemnitz University of Technology Chemnitz Germany

Abstract

AbstractElectrical impedance tomography (EIT) is a promising non‐invasive imaging technique that visualizes the electrical conductivity of an anatomic structure to form based on measured boundary voltages. However, the EIT inverse problem for the image reconstruction is nonlinear and highly ill‐posed. Therefore, in this work, a simulated dataset that mimics the human thorax was generated with boundary voltages based on given conductivity distributions. To overcome the challenges of image reconstruction, an ensemble learning method was proposed. The ensemble method combines several convolutional neural network models, which are the simple Convolutional Neural Network (CNN) model, AlexNet, AlexNet with residual block, and the modified AlexNet model. The ensemble models’ weights selection was based on average technique giving the best coefficient of determination (R2 score). The reconstruction quality is quantitatively evaluated by calculating the root mean square error (RMSE), the coefficient of determination (R2 score), and the image correlation coefficient (ICC). The proposed method's best performance is an RMSE of 0.09404, an R2 score of 0.926186, and an ICC of 0.95783 using an ensemble model. The proposed method is promising as it can construct valuable images for clinical EIT applications and measurements compared to previous studies.

Funder

Deutscher Akademischer Austausch Dienst Kairo

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3