Hybrid brain tumor classification of histopathology hyperspectral images by linear unmixing and an ensemble of deep neural networks

Author:

Cruz‐Guerrero Inés A.12,Campos‐Delgado Daniel Ulises1ORCID,Mejía‐Rodríguez Aldo R.1,Leon Raquel3,Ortega Samuel3,Fabelo Himar3,Camacho Rafael4,Plaza Maria de la Luz4,Callico Gustavo3

Affiliation:

1. Facultad de Ciencias Universidad Autonoma de San Luis Potosí (UASLP) San Luis Potosi Mexico

2. Department of Biostatistics and Informatics, Colorado School of Public Health University of Colorado Anschutz Medical Campus Colorado USA

3. Institute for Applied Microelectronics (IUMA) University of Las Palmas de Gran Canaria Las Palmas de Gran Canaria Spain

4. Department of Pathological Anatomy University Hospital Doctor Negrin of Gran Canaria Las Palmas de Gran Canaria Spain

Abstract

AbstractHyperspectral imaging has demonstrated its potential to provide correlated spatial and spectral information of a sample by a non‐contact and non‐invasive technology. In the medical field, especially in histopathology, HSI has been applied for the classification and identification of diseased tissue and for the characterization of its morphological properties. In this work, we propose a hybrid scheme to classify non‐tumor and tumor histological brain samples by hyperspectral imaging. The proposed approach is based on the identification of characteristic components in a hyperspectral image by linear unmixing, as a features engineering step, and the subsequent classification by a deep learning approach. For this last step, an ensemble of deep neural networks is evaluated by a cross‐validation scheme on an augmented dataset and a transfer learning scheme. The proposed method can classify histological brain samples with an average accuracy of 88%, and reduced variability, computational cost, and inference times, which presents an advantage over methods in the state‐of‐the‐art. Hence, the work demonstrates the potential of hybrid classification methodologies to achieve robust and reliable results by combining linear unmixing for features extraction and deep learning for classification.

Funder

European Commission

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3