Affiliation:
1. Digital Health and Biomedical Applications Area, Vicomtech Foundation Basque Research and Technology Alliance (BRTA) Donostia‐San Sebastián Spain
2. eHealth Group Bioengineering area Biogipuzkoa Health Research Institute Donostia‐San Sebastián Spain
Abstract
AbstractThis work presents a proof‐of‐concept of a robotic‐driven intra‐operative scanner designed for knee cartilage lesion repair, part of a system for direct in vivo bioprinting. The proposed system is based on a photogrammetric pipeline, which reconstructs the cartilage and lesion surfaces from sets of photographs acquired by a robotic‐handled endoscope, and produces 3D grafts for further printing path planning. A validation on a synthetic phantom is presented, showing that, despite the cartilage smooth and featureless surface, the current prototype can accurately reconstruct osteochondral lesions and their surroundings with mean error values of 0.199 ± 0.096 mm but with noticeable concentration on areas with poor lighting or low photographic coverage. The system can also accurately generate grafts for bioprinting, although with a slight tendency to underestimate the actual lesion sizes, producing grafts with coverage errors of −12.2 ± 3.7, −7.9 ± 4.9, and −15.2 ± 3.4% for the medio‐lateral, antero‐posterior, and craneo‐caudal directions, respectively. Improvements in lighting and acquisition for enhancing reconstruction accuracy are planned as future work, as well as integration into a complete bioprinting pipeline and validation with ex vivo phantoms.
Publisher
Institution of Engineering and Technology (IET)
Subject
Health Information Management,Health Informatics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献