Electromagnetic performance analysis of a new high‐speed hybrid excitation synchronous machine

Author:

Su Wu1ORCID,Lin Nan1,Zhang Xianbiao1,Wang Dong1

Affiliation:

1. National Key Laboratory of Electromagnetic Energy Naval University of Engineering Wuhan Hubei Province China

Abstract

AbstractTo facilitate the regulation of the air‐gap magnetic field of permanent magnet synchronous machines, a novel topology of a high‐speed hybrid excitation synchronous machine (HESM) was presented. The electromagnetic performance of the proposed HESM was evaluated. The air‐gap magnetic field regulation principle was introduced first. Then, a mathematical model of the HESM was established. Based on the characteristics of a 3D magnetic circuit, the HESM equalled three types of 2D magnetic circuit machines in axial parallel superposition, and thus the expressions of inductance parameters were deduced. Subsequently, the voltage regulation performance of the HESM was assessed according to the mathematical model and inductance parameters. The loss and efficiency were calculated. Finally, a HESM prototype was tested and verified.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3