Primary component segmental design to suppress the normal force ripple for the permanent magnet linear synchronous motor

Author:

Tan Qiang1ORCID,Tian Bing1,Wang Xinbang1,Huang Xuzhen1,Li Liyi2

Affiliation:

1. College of Automation Nanjing University of Aeronautics and Astronautics Nanjing China

2. College of Electrical Engineering and Automation Harbin Institute of Technology Harbin China

Abstract

AbstractThere is not only thrust but also normal force between the primary and secondary components for the single‐side flat plate permanent magnet linear synchronous motor (PMLSM). The normal force will fluctuate periodically, which will cause friction perturbation and finally affect the positioning accuracy of linear feed system. For the single‐side flat plate PMLSM, the variation law of normal force ripple under the coupling effect of multiple effects is studied, and the method of primary component segmental design to suppress it is proposed. Firstly, the influence of the cogging effect, the end effect and the armature reaction on the normal force ripple is analysed. Meanwhile the mathematical model of normal force ripple is established. Secondly, the PMLSM with segmental primary component is introduced and its suppression mechanism to the normal force ripple is expounded. On this basis, a scheme combining the non‐integer pole slot matching with the primary component segmental design is proposed to further suppress the normal force ripple. Finally, an 18‐slot 96/5‐pole prototype is taken as an example to carry out the finite element simulation and experimental test, of which the results verify the research theory in this paper.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3