A modified approach for efficient cogging torque suppression in a flux switching permanent magnet generator used in micro‐scale wind turbines

Author:

Darjazini Amir1ORCID,Vahedi Abolfazl1ORCID,Gharehseyed Saber1ORCID,Nobahari Amin1ORCID

Affiliation:

1. Iran University of Science and Technology Department of Electrical Engineering Tehran Iran

Abstract

AbstractIn recent years, Flux Switching Permanent Magnet (FSPM) machines have attracted notable attention in direct drive, low speed, and high torque density applications such as wind turbines. However, their relatively high cogging torque has been identified as a significant challenge for such applications primarily because of its effects on both starting and running performance of the wind turbines. The authors, therefore, aim to present a modified approach that can improve the cogging torque issue and eliminate the weaknesses of the previously introduced designs. To reach this goal, first, an operating point is chosen for the studied machine regarding the available small‐scale turbines in the market. Then, the potential benefits of combining different cogging torque reduction schemes are investigated thorough the proposed method. This is intended to be done on the rotor teeth without imposing any complications or extra costs. The results show that a simultaneous improvement in the cogging torque and the energy conversion capability of the machine could be achieved through this cost‐effective approach. To end with, the sensitivity of the best cases to the expected manufacturing tolerances is investigated. All analyses are performed via two‐dimensional finite‐element (2D‐FE) models, the accuracy of which has been pre‐certified through experimental measurement.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3