Study on the partial discharge characteristics induced by the motion of cellulose particles in transformer oil

Author:

Liu Yijin1ORCID,Zhao Tao1ORCID,Liu Yunpeng1,Liu Yunuo1,Jiaxue Xu1,Yang Chaojie1ORCID

Affiliation:

1. Hebei Provincial Key Laboratory of Power Transmission Equipment Security Defense North China Electric Power University Baoding China

Abstract

AbstractCellulose particles present a significant concern within the oil‐paper insulation of transformers, posing potential risks to insulation performance. Under the influence of the electric field, the movement of cellulose particles can compromise the transformer's insulation, leading to potential failure. An experimental platform was established to synchronously record particle motion images, partial discharge (PD) pulses, and electric voltage waveforms in oil, aiming to observe the PD characteristics resulting from particle motion under alternating current (AC) voltage and investigate the relationship between different particle motion modes, motion positions, and PD signals. The findings reveal that the phase distribution of PD signals is correlated with the particle motion mode. Specifically, the phase distribution of PD pulses during the back‐and‐forth motion mode is between 4°–94° and 182°–275°. In the suspended oscillation motion mode, the PD pulses phase is concentrated between 20°–84° and 203°–268°. The generation of PD pulses is closely linked to the particle's motion position. PD pulses occur when the particle remains on the electrode during the back‐and‐forth motion mode, generally, PD pulses rarely occur during the jumping process between the two electrodes. In the suspended oscillation motion mode, PD pulses occur when the particle moves upward, but generally do not occur during downward movement. Furthermore, the Pulse Sequence Analysis technique was used to employ the PD characteristics caused by particle motion in transformer oil. The simulation calculations of the electric field distribution for two different particle motion modes show that the particle's motion can cause distortion of the electric field distribution, leading to the generation of PD. The study of the PD characteristics at different particle motion modes and positions obtained contributes to a deeper understanding of the PD induced by cellulose particle motion under AC voltage and provides a reference for the insulation evaluation of transformers.

Publisher

Institution of Engineering and Technology (IET)

Reference31 articles.

1. Effects of Fiber and Copper Particles on Conductivity and Breakdown Characteristics of Natural Ester and Mineral Oil under DC Voltage

2. Motion behaviors of metallic particles in moving transformer oil under uniform dc electric fields;Luo X.;High Volt. Eng.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3