Rotor speed signature analysis‐based inter‐turn short circuit fault detection for permanent magnet synchronous machines

Author:

Wei Dong1ORCID,Liu Kan1ORCID,Zhu Zi‐Qiang2ORCID,Zhou Shichao1,Wang Jianbo1,Chen Yongdan3

Affiliation:

1. College of Mechanical and Vehicle Engineering Hunan University Changsha China

2. Department of Electrical and Electronics Engineering University of Sheffield Sheffield UK

3. National Key Lab of Vehicle Transmission China North Vehicle Research Institute Beijing China

Abstract

AbstractA rotor speed signature analysis‐ (RSSA‐)based inter‐turn short circuit (ITSC) fault diagnostic method is proposed, which is robust with regard to speed‐ and current‐loop bandwidths of permanent magnet synchronous machine (PMSM) drive systems. Conventional ITSC fault detection solutions that rely on current signals or extra devices. Thus, an initial step of investigation on the validity of RSSA is taken for residual insulation capacity monitoring of the ITSC fault at the incipient stage. The Vold–Kalman filtering order tracking method is employed for the real‐time extraction of fault features. Besides, the impact of speed‐ and current‐loop controller bandwidths on ITSC fault diagnosis is also analysed and an Adaline estimator is designed to decouple their impacts. Finally, the effectiveness of the proposed method is verified on a faulty PMSM, which exhibits satisfying results in tracking the degradation of residual insulation, even if the phase currents are significantly distorted due to low switching frequency of the inverter.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3