Deep learning based model predictive control of active filter inverter as interface for photovoltaic generation

Author:

Rasoulian Amin1,Saghafi Hadi1ORCID,Abbasian Mohammadali1,Delshad Majid1ORCID

Affiliation:

1. Department of Electrical Engineering Isfahan (Khorasgan) Branch, Islamic Azad University Isfahan Iran

Abstract

AbstractBy increasing the photovoltaic (PV) systems capacity worldwide, the requirement for a fast, reliable, and efficient control system is becoming more crucial. To this end, model predictive control (MPC) is known as one of the potential solutions. Although MPC is an easily implemented control system, it needs a high computational complexity due to the dependency on solving an iterative optimization problem. To overcome this problem, this study develops an artificial intelligence‐based on one‐dimensional convolutional neural network (1D‐CNN) based MPCs. While 1D‐CNN benefits from the inherent strong feature extraction/selection capability and lower computational complexity than other deep methods, it still cannot properly track the dynamic changes due to fixed weights during the training process. Thus, this paper integrates the dynamic weighting training process and proposed dynamic weighing 1D‐CNN for the implementation of intelligent MPC for the PVs. The numerical results based on different load types show an efficient performance of the proposed system and verify the superiority of the proposed method in comparison with the conventional MPC and several state‐of‐the‐arts shallow and deep based MPC for the PVs in terms of the total harmonic distortion (THD) and frequency switching.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3