MDGN: Circuit design of memristor‐based denoising autoencoder and gated recurrent unit network for lithium‐ion battery state of charge estimation

Author:

Wang Jiayang1,Zhang Xinghao1,Han Yifeng2,Lai Chun Sing3ORCID,Dong Zhekang1ORCID,Ma Guojin1,Gao Mingyu1

Affiliation:

1. The School of Electronics and Information Hangzhou Dianzi University Hangzhou China

2. The College of Electrical Engineering Zhejiang University Hangzhou China

3. The Department of Electronic and Electrical Engineering Brunel University London London UK

Abstract

AbstractDue to the highly complex and non‐linear physical dynamics of lithium‐ion batteries, it is unfeasible to measure the state of charge (SOC) directly. Designing systems capable of accurate SOC estimation has become a key technology for battery management systems (BMS). Existing mainstream SOC estimation approaches still suffer from the limitations of low efficiency and high‐power consumption, owing to the great number of samples required for training. To address these gaps, this paper proposes a memristor‐based denoising autoencoder and gated recurrent unit network (MDGN) for fast and accurate SOC estimation of lithium‐ion batteries. Specifically, the DAE circuit module is designed to extract useful feature representation with strong generalization and noise immunity. Then, the gated recurrent unit (GRU) circuit module is designed to learn the long‐term dependencies between high‐dimensional input and output data. The overall performance is evaluated by root mean square error (RMSE) and mean absolute error (MAE) at 0, 25, and 45°C, respectively. Compared with the current state‐of‐the‐art methods, the entire scheme shows its superior performance in accuracy, robustness, and operation cost (referring to time cost).

Funder

National Basic Research Program of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MDEmoNet: A Multimodal Driver Emotion Recognition Network for Smart Cockpit;2024 IEEE International Conference on Consumer Electronics (ICCE);2024-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3