Affiliation:
1. School of Cyber Science and Engineering, Sichuan University, Chengdu 610207, China
2. College of Computer Science, Sichuan University, Chengdu 610065, China
3. School of Information and Engineering, Sichuan Tourism University, Chengdu 610100, China
Abstract
Source code vulnerabilities are one of the significant threats to software security. Existing deep learning-based detection methods have proven their effectiveness. However, most of them extract code information on a single intermediate representation of code (IRC), which often fails to extract multiple information hidden in the code fully, significantly limiting their performance. To address this problem, we propose VulMPFF, a vulnerability detection method that fuses code features under multiple perspectives. It extracts IRC from three perspectives: code sequence, lexical and syntactic relations, and graph structure to capture the vulnerability information in the code, which effectively realizes the complementary information of multiple IRCs and improves vulnerability detection performance. Specifically, VulMPFF extracts serialized abstract syntax tree as IRC from code sequence, lexical and syntactic relation perspective, and code property graph as IRC from graph structure perspective, and uses Bi-LSTM model with attention mechanism and graph neural network with attention mechanism to learn the code features from multiple perspectives and fuse them to detect the vulnerabilities in the code, respectively. We design a dual-attention mechanism to highlight critical code information for vulnerability triggering and better accomplish the vulnerability detection task. We evaluate our approach on three datasets. Experiments show that VulMPFF outperforms existing state-of-the-art vulnerability detection methods (i.e., Rats, FlawFinder, VulDeePecker, SySeVR, Devign, and Reveal) in Acc and F1 score, with improvements ranging from 14.71% to 145.78% and 152.08% to 344.77%, respectively. Meanwhile, experiments in the open-source project demonstrate that VulMPFF has the potential to detect vulnerabilities in real-world environments.
Funder
National Key Research and Development Program
Publisher
Institution of Engineering and Technology (IET)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献