Affiliation:
1. Department of Electrical and Electronics Engineering University of West Attica Egaleo Greece
2. Department of Information and Computer Engineering University of West Attica Egaleo Greece
3. Department of Industrial Design and Production Engineering University of West Attica Egaleo Greece
Abstract
AbstractThe satisfaction of the Quality of Service (QoS) levels during an entire service life‐cycle is one of the key targets for Service Providers (SP). To achieve this in an optimal way, it is required to predict the exact amount of the needed physical and virtual resources, for example, CPU and memory usage, for any possible combination of parameters that affect the system workload, such as number of users, duration of each request, etc. To solve this problem, the authors introduce a novel architecture and its open‐source implementation that a) monitors and collects data from heterogeneous resources, b) uses them to train machine learning models and c) tailors them to each particular service type. The candidate solution is validated in two real‐life services showing very good accuracy in predicting the required resources for a large number of operational configurations where a data augmentation method is also applied to further decrease the estimation error up to 32%.
Publisher
Institution of Engineering and Technology (IET)
Subject
Control and Optimization,Management Science and Operations Research,Computer Networks and Communications
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献