Autonomous Energy Management Strategy in the Intermediate Circuit of an Electric Hybrid Drive with a Supercapacitor

Author:

Vacarda MilanORCID

Abstract

Hybrid electric vehicles (HEVs) require the design of an energy management strategy (EMS). Many EMS are solved using different types of deterministic rules (rule‐based (RB)) or optimization‐based (OB) methods. The disadvantage of these strategies is that the primary energy flows in the drive are only solved “ex post,” when in principle, they cannot bring a substantial increase in energy recovery. A little‐studied HEV traction drive topology is an internal combustion engine (ICE), supercapacitor (SC), traction motor (TM), and electric power divider (EPS) assembly. The original EMS method implemented in this assembly is based on the control of energy flows at the physical level in the DC link node. Changes in the power of the TM, under the condition of zero summation of currents in the DC link, will spontaneously induce energy spillover from and to the supercapacitor. The state of energy (SOE) in the supercapacitor can then be maintained by the balanced power of the ICE. This makes it possible to achieve a reduction in accelerations of approximately 30%. In principle, the presented EMS makes it possible to absorb all the kinetic and potential energy of negative driving resistances, thereby significantly reducing vehicle consumption. The strategy does not even require knowledge of the driving profile and bypasses complicated optimization algorithms. When validating the EMS method on an experimental test bench by implementing the driving cycle into real prototype components of the HEV physical model, a recovery rate of 14% was achieved, but the potential is up to twice that.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3