Securing the Internet of Medical Things with ECG‐based PUF encryption

Author:

Boi Biagio1ORCID,Esposito Christian1ORCID

Affiliation:

1. University of Salerno Salerno Italy

Abstract

AbstractThe Internet of Things (IoT) is revolutionizing the healthcare industry by enhancing personalized patient care. However, the transmission of sensitive health data in IoT systems presents significant security and privacy challenges, further exacerbated by the difficulty of exploiting traditional protection means due to poor battery equipment and limited storage and computational capabilities of IoT devices. The authors analyze techniques applied in the medical context to encrypt sensible data and deal with the unique challenges of resource‐constrained devices. A technique that is facing increasing interest is the Physical Unclonable Function (PUF), where biometrics are implemented on integrated circuits' electric features. PUFs, however, demand special hardware, so in this work, instead of considering the physical device as a source of randomness, an ElectroCardioGram (ECG) can be taken into consideration to make a ‘virtual’ PUF. Such an mechanism leverages individual ECG signals to generate a cryptographic key for encrypting and decrypting data. Due to the poor stability of the ECG signal and the typical noise existing in the measurement process for such a signal, filtering and feature extraction techniques must be adopted. The proposed model considers the adoption of pre‐processing techniques in conjunction with a fuzzy extractor to add stability to the signal. Experiments were performed on a dataset containing ECG records gathered over 6 months, yielding good results in the short term and valuable outcomes in the long term, paving the way for adaptive PUF techniques in this context.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3