Affiliation:
1. School of Automation Beijing Institute of Technology Beijing China
Abstract
AbstractHuman activity recognition (HAR) with smartphone sensors is a significant research direction in human‐cyber‐physical systems. Aiming at the problem of feature redundancy and low recognition accuracy of HAR, this paper presents a novel system architecture comprising three parts: feature selection based on an oppositional and chaos particle swarm optimization (OCPSO) algorithm, multi‐input one‐dimensional convolutional neural network (MI‐1D‐CNN) utilizing time‐domain and frequency‐domain signals, and deep decision fusion (DDF) combining D‐S evidence theory and entropy. The proposed architecture is evaluated on the UCI HAR and WIDSM datasets. The results highlight that OCPSO performs better than particle swarm optimization (PSO) in feature selection, convergence speed, and recognition accuracy. Moreover, it is shown that for the MI‐1D‐CNN classifier, the frequency‐domain signals (95.96%) perform better than time‐domain signals (95.66%). In addition, this paper investigates the impact of the convolution layers, feature maps, filter sizes, and decision fusion methods on recognition accuracy. The results demonstrate that the DDF method (97.81%) outperforms single‐layer decision fusion in improving the recognition accuracy on the UCI HAR dataset.
Publisher
Institution of Engineering and Technology (IET)
Subject
Artificial Intelligence,Electrical and Electronic Engineering,Computer Networks and Communications,Computer Science Applications,Information Systems
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献