Boosting the Transferability of Ensemble Adversarial Attack via Stochastic Average Variance Descent

Author:

Zhao Lei1,Liu Zhizhi1,Wu Sixing1,Chen Wei1,Wu Liwen1ORCID,Pu Bin2ORCID,Yao Shaowen1

Affiliation:

1. School of Software, Yunnan University, Kunming, Yunnan, China

2. College of Computer Science and Electronic Engineering, Hunan University, Changsha, Hunan, China

Abstract

Adversarial examples have the property of transferring across models, which has created a great threat for deep learning models. To reveal the shortcomings in the existing deep learning models, the method of the ensemble has been introduced to the generating of transferable adversarial examples. However, most of the model ensemble attacks directly combine the different models’ output but ignore the large differences in optimization direction of them, which severely limits the transfer attack ability. In this work, we propose a new kind of ensemble attack method called stochastic average ensemble attack. Unlike the existing approach of averaging the outputs of each model as an integrated output, we continuously optimize the ensemble gradient in an internal loop using the model history gradient and the average gradient of different models. In this way, the adversarial examples can be updated in a more appropriate direction and make the crafted adversarial examples more transferable. Experimental results on ImageNet show that our method generates highly transferable adversarial examples and outperforms existing methods.

Funder

Yunnan Provincial Science and Technology Department

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3