Robust LFC design using adaptive neuro‐fuzzy inference‐aided optimal fractional‐order PIDA control for perturbed power systems with solar and wind power sources

Author:

Roy Tushar Kanti1ORCID,Yu Samson S.2ORCID,Mahmud Md. Apel3,Trinh Hieu2

Affiliation:

1. School of Engineering Macquarie University Sydney Australia

2. School of Engineering Deakin University, Waurn Ponds Geelong Australia

3. College of Science & Engineering Flinders University Adelaide South Australia Australia

Abstract

AbstractMaintaining stability in modern power systems is challenging due to complex structures, rising power demand, and load disturbances. The integration of renewable energy sources further threatens stability by causing imbalances between generation and demand. Conventional load frequency stabilization methods fall short in such scenarios. This paper proposes an optimal fractional‐order proportional‐integral‐derivative‐acceleration (FOPIDA) controller, enhanced by a robust adaptive neuro‐fuzzy inference system (ANFIS), to improve load frequency control and reliability in power systems with wind and solar generators. First, the dynamical model of a multi‐area interconnected power system, including a thermal power plant, wind turbine, and solar photovoltaic generators, is developed. A decentralized ANFIS‐FOPIDA controller is then designed for load frequency control objectives. The gains of this controller are optimized using the whale optimization algorithm (WOA), focusing on frequency deviation and tie‐line power exchange. Simulations on a New England IEEE 10‐generator 39‐bus power system demonstrate the approach's effectiveness under various disturbances, including random load‐generation disturbances and nonlinear generation behaviors. Comparisons with other strategies, such as fractional order (FO) beetle swarm optimization algorithm (FOBSOA)‐FOPIDA, WOA‐PIDA, and WOA‐ANFIS‐PIDA, and recent control approaches highlight the superior performance of the WOA‐ANFIS‐FOPIDA method in enhancing power system stability.

Funder

Australian Research Council

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3