Coordinated optimization of source‐grid‐load‐storage for wind power grid‐connected and mobile energy storage characteristics of electric vehicles

Author:

Li Yingliang1ORCID,Dong Zhiwei1

Affiliation:

1. School of Electronic Engineering Xi'an Shiyou University Xi'an China

Abstract

AbstractThe rapid growth in the number of electric vehicles (EVs), driven by the ‘double‐carbon’ target, and the impact of uncontrolled charging and discharging behaviour and discharged battery losses severely limit electric vehicles’ low carbon characteristics. Existing research on systemic low‐carbon emissions and electric vehicle charging and discharging issues is usually determined by considering only carbon trading markets or charging and discharging management on the source side. In this regard, a coordinated and optimized operation model that considers the participation of electric vehicle clusters in deep peaking and the source network load and storage adjustable resources is proposed. The upper layer establishes a real‐time price‐based demand response mechanism for the load side with the minimum net load fluctuation as the objective function; the middle layer establishes a comprehensive operation mechanism for the source and storage side that includes an orderly charging and discharging peaking compensation mechanism for electric vehicles, and a deep peaking mechanism that takes into account clean emission, and constructs an optimal operation model with the minimum comprehensive operating cost as the objective function; the lower layer establishes a distribution network loss minimization model for the network side that takes into account the orderly charging and discharging of electric vehicle as the objective function. The optimal load model with the objective function of minimizing the distribution network loss is established at the lower level. Finally, the original problem is transformed into a mixed integer linear programming problem, and the model's effectiveness is verified by setting different scenarios. The model reduces the total cost by 22.22%, improves the wind power consumption rate by 19.55%, reduces the actual carbon emission by 16.66%, and reduces the distribution network loss by 13.91% compared to the basic model.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3