Coordination of aluminium crusher and battery energy storage system to provide multistage power system services

Author:

Rubasinghe Osaka1,Zhang Tingze1,Zhang Xinan1ORCID,Chau Tat Kei1,Chow Yau2,Fernando Tyrone1,Iu Herbert Ho‐Ching1

Affiliation:

1. School of Electrical, Electronic and Computer Engineering University of Western Australia Crawley Western Australia Australia

2. Grid Transformation Western Power Perth Western Australia Australia

Abstract

AbstractAncillary service provision and peak shaving (PS) play essential roles in the current day‐to‐day power system operation, which is challenged by the increasing renewable generation penetration. Providing these critical services using classical approaches such as peak load generators has been limited due to high operational costs and environmental impacts. The use of battery energy storage systems (BESS) is another popular method that is limited by high initial investment costs and high degradation rates. In this work, a novel approach to utilize industrial loads and BESS to provide multiple power system services in different stages is proposed. Industrial loads such as aluminium crushers are known for their intensive electricity consumption. Nevertheless, when applied in frequency regulation (FR), they perform poorly due to their discrete nature in operation. This drawback and the aforementioned BESS shortcomings are addressed by combining on‐site BESS with plant machinery to provide FR services and recover BESS related costs. Later, depending on the optimal capacity distribution, BESS usage is extended into the energy arbitrage market to provide PS services. This approach resulted in higher earnings for participating customers and network operators, as well as in less emissions, and minimal BESS degradations. An Australian case study of the South West Interconnected System, along with Worsley Alumina refinery data of Western Australia has been used to showcase the model performances.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3