A risk‐averse strategy based on information gap decision theory for optimal placement of service transformers in distribution networks

Author:

Alipour Mohammad Ali1,Askarzadeh Alireza1ORCID

Affiliation:

1. Department of Energy Management and Optimization, Institute of Science and High Technology and Environmental Sciences Graduate University of Advanced Technology Kerman Iran

Abstract

AbstractIn distribution networks, among the planning problems, optimal placement of medium voltage to low voltage (MV/LV) transformers is a vital and challenging issue. Electrical load uncertainty is an important factor that affects the result of this planning problem. This paper investigates optimal allocation of service transformers with respect to the load uncertainty modelled by information gap decision theory (IGDT). For this aim, the planning problem is solved in risk‐neutral (RN) and risk‐averse (RA) frameworks. In RN strategy, objective function is defined to minimize the cost of service transformers and low voltage feeders as well as the cost of power losses. On the other hand, in RA strategy, objective function is defined to maximize the radius of the uncertainty in such a way that any deviation of the uncertain parameter results in an objective function value that is not worse than the critical limit. The optimization problem is solved by crow search algorithm (CSA) and particle swarm optimization (PSO) and the results are compared. In mid‐term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 5.89%, 13.64%, 21.37%, 28.97%, 34.39% and 43.46%, respectively. In long‐term planning, with respect to the deviation factors of 0.05, 0.1, 0.15, 0.2, 0.25 and 0.3, optimal values of the uncertainty radius are 6.92%, 13.33%, 20.39%, 27.03%, 34% and 40.46%, respectively. Moreover, on average, CSA finds more promising results than PSO.

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3