Probabilistic optimal power flow computation for power grid including correlated wind sources

Author:

Xiao Qing1ORCID,Tan Zhuangxi1,Du Min2

Affiliation:

1. School of Information and Electrical Engineering Hunan University of Science and Technology Xiangtan Hunan Province China

2. Department of Automatic Control and Systems Engineering University of Sheffield Sheffield South Yorkshire UK

Abstract

AbstractThis paper sets out to develop an efficient probabilistic optimal power flow (POPF) algorithm to assess the influence of wind power on power grid. Given a set of wind data at multiple sites, their marginal distributions are fitted by a newly developed generalized Johnson system, whose parameters are specified by a percentile matching method. The correlation of wind speeds is characterized by a flexible Liouville copula, which allows to model the asymmetric dependence structure. In order to improve the efficiency for solving POPF problem, a lattice sampling method is developed to generate wind samples at multiple sites, and a logistic mixture model is proposed to fit distributions of POPF outputs. Finally, case studies are performed, the generalized Johnson system is compared with Weibull distribution and the original Johnson system for fitting wind samples, Liouville copula is compared against Archimedean copula for modelling correlated wind samples, and lattice sampling method is compared with Sobol sequence and Latin hypercube sampling for solving POPF problem on IEEE 118‐bus system, the results indicate the higher accuracy of the proposed methods for recovering the joint cumulative distribution function of correlated wind samples, as well as the higher efficiency for calculating statistical information of POPF outputs.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3