Enhancing Industrial Wireless Communication Security Using Deep Learning Architecture-Based Channel Frequency Response

Author:

Alhoraibi Lamia1ORCID,Alghazzawi Daniyal1ORCID,Alhebshi Reemah1ORCID,Nawaf Liqaa F.2ORCID,Carroll Fiona2

Affiliation:

1. Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia

2. Cardiff School of Technologies, Cardiff Metropolitan University, Cardiff, UK

Abstract

Wireless communication plays a crucial role in the automation process in the industrial environment. However, the open nature of wireless communication renders industrial wireless sensor networks susceptible to malicious attacks that impersonate authorized nodes. The heterogeneity of the wireless transmission channel, coupled with hardware and software limitations, further complicates the issue of secure authentication. This form of communication urgently requires a lightweight authentication technique characterized by low complexity and high security, as inadequately secure communication could jeopardize the evolution of industrial devices. These requirements are met through the introduction of physical layer authentication. This article proposes novel deep learning (DL) models designed to enhance physical layer authentication by autonomously learning from the frequency domain without relying on expert features. Experimental results demonstrate the effectiveness of the proposed models, showcasing a significant enhancement in authentication accuracy. Furthermore, the study explores the efficacy of various DL architecture settings and traditional machine learning approaches through a comprehensive comparative analysis.

Funder

King Abdulaziz University

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3