Optimal fusion‐based localization method for tracking of smartphone user in tall complex buildings

Author:

Jamil Harun1ORCID,Kim Do‐Hyeun2

Affiliation:

1. Department of Electronics Engineering Jeju National University Jeju‐Si Republic of Korea

2. Department of Computer Engineering Jeju National University Jeju‐Si Republic of Korea

Abstract

AbstractIn the event of a fire breaking out or in other complicated situations, a mobile computing solution combining the Internet of Things and wearable devices can actually assist tracking solutions for rescuing and evacuating people in multistory structures. Thus, it is crucial to increase the positioning technology's accuracy. The sequential Monte Carlo (SMC) approach is used in various applications such as target tracking and intelligent surveillance, which rely on smartphone‐based inertial data sequences. However, the SMC method has intrinsic flaws, such as sample impoverishment and particle degeneracy. A novel SMC approach is presented, which is built on the weighted differential evolution (WDE) algorithm. Sequential Monte Carlo approaches start with random particle placements and arrives at the desired distribution with a slower variance reduction, like in a high‐dimensional space, such as a multistory structure. Weighted differential evolution is included before the resampling procedure to guarantee the appropriate variety of the particle set, prevent the usage of an inadequate number of valid samples, and preserve smartphone user position accuracy. The values of the smartphone‐based sensors and BLE‐beacons are set as input to the SMC, which aids in fast approximating the posterior distributions, to speed up the particle congregation process in the proposed SMC‐based WDE approach. Lastly, the robustness and efficacy of the suggested technique more accurately reflect the actual situation of smartphone users. According to simulation findings, the suggested approach provides improved location estimation with reduced localization error and quick convergence. The results confirm that the proposed optimal fusion‐based SMC‐WDE scheme performs 9.92% better in terms of MAPE, 15.24% for the case of MAE, and 0.031% when evaluating based on the R2 Score.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3