Car‐following strategy of intelligent connected vehicle using extended disturbance observer adjusted by reinforcement learning

Author:

Yan Ruidong1ORCID,Li Penghui1,Gao Hongbo2ORCID,Huang Jin3,Wang Chengbo4

Affiliation:

1. School of Traffic and Transportation The Beijing Jiaotong University Beijing China

2. Department of Automation School of Information Science and Technology University of Science and Technology of China Hefei China

3. School of Vehicle and Mobility The Tsinghua University Beijing China

4. Liverpool Logistics Offshore and Marine Research Institute (LOOM) Liverpool John Moores University Liverpool UK

Abstract

AbstractDisturbance observer‐based control method has achieved good results in the car‐following scenario of intelligent and connected vehicle (ICV). However, the gain of conventional extended disturbance observer (EDO)‐based control method is usually set manually rather than adjusted adaptively according to real time traffic conditions, thus declining the car‐following performance. To solve this problem, a car‐following strategy of ICV using EDO adjusted by reinforcement learning is proposed. Different from the conventional method, the gain of proposed strategy can be adjusted by reinforcement learning to improve its estimation accuracy. Since the “equivalent disturbance” can be compensated by EDO to a great extent, the disturbance rejection ability of the car‐following method will be improved significantly. Both Lyapunov approach and numerical simulations are carried out to verify the effectiveness of the proposed method.

Funder

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3