Position‐aware pushing and grasping synergy with deep reinforcement learning in clutter

Author:

Zhao Min12ORCID,Zuo Guoyu12ORCID,Yu Shuangyue3,Gong Daoxiong12ORCID,Wang Zihao12,Sie Ouattara1

Affiliation:

1. Intelligent Robotics Laboratory Faculty of Information Technology Beijing University of Technology Beijing China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent Systems Beijing China

3. Laboratory of Biomechatronics and Intelligent Robotics (BIRO) Department of Mechanical and Aerospace Engineering North Carolina State University Raleigh North Carolina USA

Abstract

AbstractThe positional information of objects is crucial to enable robots to perform grasping and pushing manipulations in clutter. To effectively perform grasping and pushing manipulations, robots need to perceive the position information of objects, including the coordinates and spatial relationship between objects (e.g., proximity, adjacency). The authors propose an end‐to‐end position‐aware deep Q‐learning framework to achieve efficient collaborative pushing and grasping in clutter. Specifically, a pair of conjugate pushing and grasping attention modules are proposed to capture the position information of objects and generate high‐quality affordance maps of operating positions with features of pushing and grasping operations. In addition, the authors propose an object isolation metric and clutter metric based on instance segmentation to measure the spatial relationships between objects in cluttered environments. To further enhance the perception capacity of position information of the objects, the authors associate the change in the object isolation metric and clutter metric in cluttered environment before and after performing the action with reward function. A series of experiments are carried out in simulation and real‐world which indicate that the method improves sample efficiency, task completion rate, grasping success rate and action efficiency compared to state‐of‐the‐art end‐to‐end methods. Noted that the authors’ system can be robustly applied to real‐world use and extended to novel objects. Supplementary material is available at https://youtu.be/NhG\_k5v3NnM}{https://youtu.be/NhG\_k5v3NnM.

Funder

Beijing Municipal Natural Science Foundation

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3