GastroNet: A robust attention‐based deep learning and cosine similarity feature selection framework for gastrointestinal disease classification from endoscopic images

Author:

Noor Muhammad Nouman1ORCID,Nazir Muhammad1,Ashraf Imran2,Almujally Nouf Abdullah3,Aslam Muhammad4ORCID,Fizzah Jilani Syeda5

Affiliation:

1. Department of Computer Science HITEC University Taxila Pakistan

2. Department of Computer Engineering HITEC University Taxila Pakistan

3. Department of Information Systems College of Computer and Information Sciences Princess Nourah Bint Abdulrahman University Riyadh Saudi Arabia

4. School of Computing Engineering and Physical Sciences University of West of Scotland Scotland UK

5. Department of Physics, Physical Sciences Building Aberystwyth University Aberystwyth UK

Abstract

AbstractDiseases of the Gastrointestinal (GI) tract significantly affect the quality of human life and have a high fatality rate. Accurate diagnosis of GI diseases plays a pivotal role in healthcare systems. However, processing large amounts of medical image data can be challenging for radiologists and other medical professionals, increasing the risk of inaccurate medical assessments. Computer‐aided Diagnosis systems provide help to doctors for rapid and accurate diagnosis, thus resulting in saving lives. Recently, many techniques are found in the literature that uses deep Convolutional Neural Network (CNN) models for accurate disease classification. However, they have limitations in their ability to detect deformation‐invariant features and lack robustness. The diseased region is highlighted, using attention‐based image generation and superimposition with original images. A lightweight deep CNN model is employed to get significant features. These features are further reduced using a Cosine similarity‐based technique. The proposed framework is assessed using the Kvasir dataset. To verify the effectiveness of the proposed framework, vast experiments are conducted. The overall accuracy of 97.68%, 99.02% precision, 96.37% recall, and an F‐measure of 97.68% are achieved using the 810 significant features. This reduction in features resulted in a significant reduction in classification time. The robustness of the framework can be observed not only in terms of considerable improvement in accuracy, but also in terms of precision as well as recall, and F‐measure.

Publisher

Institution of Engineering and Technology (IET)

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Vision and Pattern Recognition,Human-Computer Interaction,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3