Affiliation:
1. The Cluster of Logistics and Rail Engineering Mahidol University Salaya Thailand
2. Research Centre for Combustion Technology and Alternative Energy – CTAE and College of Industrial Technology, King Mongkut's University of Technology North Bangkok Bangkok Thailand
3. Department of Electrical Engineering National Institute of Technology Durgapur Durgapur West Bengal India
Abstract
AbstractDue to the interaction of electric multiple units (EMUs), and the electric traction networks, low frequency oscillations (LFOs) appear leading to traction blockade and overall stability related issues. For suppressing LFOs, coronavirus herd immunity optimiser (CHIO), a recently developed meta‐heuristic, has been applied for tuning controller parameters. Controller parameters are tuned to minimise the integral time absolute error (ITAE) that regulates DC‐link capacitor voltage. Results obtained using CHIO are compared with those found using other well‐established algorithms like symbiotic organisms search (SOS) and particle swarm optimisation (PSO). The supremacy of CHIO over other mentioned algorithms for mitigating LFOs was demonstrated for a diverse range of operating conditions. Results demonstrates that overshoot for the proposed algorithm‐based traction unit is 1.0061% whereas those for SOS and PSO based algorithm are obtained as 6.4542 % and 20.6166%, respectively which are quite high. CHIO is more stable than SOS and PSO and requires settling time of 0.1934 s only to reach steady‐state condition, which is 50.21% faster than SOS and 65.03% faster than PSO. Also, the total harmonic distortion (THD) for line currents of the secondary side of traction transformer (TT) are obtained as 0.88%, 2.17%, and 12.48% for CHIO, SOS, and PSO, respectively.
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献