A power switch open‐circuit fault‐tolerant scheme using dc current injection for dual active bridge converters in cascaded h‐bridge solid‐state transformer

Author:

Zang Jiajie12ORCID,Wang Jiacheng2,Zhang Jianwen3,Zhou Jianqiao3,Shi Gang3,Feng Xin3,Zhang Yixin3

Affiliation:

1. School of Electronic and Electrical Engineering Shanghai University of Engineering Science Shanghai China

2. School of Mechatronic Systems Engineering Simon Fraser University Surrey Canada

3. Key Laboratory of Control of Power Transmission and Conversion of Ministry of Education Department of Electrical Engineering School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China

Abstract

AbstractDue to its excellent modularity and scalability, the cascaded H‐bridge solid‐state transformer (CHB SST) is a prominent candidate for interconnecting different grids in future hybrid ac/dc distribution systems. However, the CHB SST's large number of power switches are potential sources of faults that can disrupt the system's normal operation. Among other failure modes, a power switch open‐circuit fault (OCF) in a dual active bridge (DAB) module in the SST can result in overcurrent and previously ignored DAB high‐frequency transformer (HFT) saturation issues. The fault is generally addressed by installing redundant modules or additional devices, which would increase the cost, size, and complexity of the system. Based on the OCF analysis presented in this paper, a fault‐tolerant scheme using dc current injection and phase shift ratio adjustment is proposed to maintain the CHB SST operation with maximum remaining bidirectional power transfer capability of the faulty DAB. The overcurrent and HFT saturation issues are also eliminated. The proposed scheme features less cost and volume as compared with module redundancy methods. Moreover, it does not require modifications in the configuration and implementation of the SST. The feasibility and effectiveness of the proposed scheme are verified through a 4.8 kVA CHB SST experimental platform.

Funder

China Scholarship Council

Natural Sciences and Engineering Research Council of Canada

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3