Energy forecasting in smart grid systems: recent advancements in probabilistic deep learning
Author:
Affiliation:
1. School of Engineering Deakin University Waurn Ponds Australia
2. Faculty of Engineering and Environment Northumbria University Newcastle Upon Tyne UK
3. School of Electrical & Electronics Engineering Nanyang Technological University Singapore
Publisher
Institution of Engineering and Technology (IET)
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering
Link
https://onlinelibrary.wiley.com/doi/pdf/10.1049/gtd2.12603
Reference151 articles.
1. Smart Grid Technologies: Communication Technologies and Standards
2. A microgrid energy management system based on non‐intrusive load monitoring via multitask learning;Çimen H.;IEEE Trans. Smart Grid,2020
3. Physical Layer Security for the Smart Grid: Vulnerabilities, Threats, and Countermeasures
4. Short-Term Spatio-Temporal Forecasting of Photovoltaic Power Production
5. Deep Learning-Based Forecasting Approach in Smart Grids With Microclustering and Bidirectional LSTM Network
Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing interpretability in power management: A time-encoded household energy forecasting using hybrid deep learning model;Energy Conversion and Management;2024-09
2. Combating Uncertainties in Smart Grid Decision Networks: Multiagent Reinforcement Learning With Imperfect State Information;IEEE Internet of Things Journal;2024-07-01
3. A comprehensive review of advancements in green IoT for smart grids: Paving the path to sustainability;Energy Reports;2024-06
4. Empowering Energy Consumption Forecasting in Smart Buildings: Towards a Hybrid Loss Function;2024 International Wireless Communications and Mobile Computing (IWCMC);2024-05-27
5. Development of a neural network module for forecasting demand for energy consumption by mass construction projects;E3S Web of Conferences;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3