Affiliation:
1. College of Integrated Circuit Science and Engineering Nanjing University of Posts and Telecommunications National and Local Joint Engineering Laboratory of RF Integration and Micro‐assembly Technology Nanjing China
Abstract
AbstractThis paper proposes and investigates a novel 4H‐SiC trench MOSFET (TMOS) with integrated high‐K deep trench and gate dielectric (INHK‐TMOS). The integrated high‐K (INHK) consists of a high‐K gate dielectric and an extended high‐K deep trench dielectric in the drift region. Firstly, the high‐K gate dielectric together with the metal‐forming high‐K metal gate structure, which increases the gate oxide capacitance (COX), reduces the threshold voltage (VTH) and the specific on‐resistance (Ron,sp). Secondly, the extended high‐K deep trench dielectric not only modulates the electric field in the drift region by introducing a new electric field peak at the bottom of the high‐K deep trench dielectric, thereby enhancing the breakdown voltage (BV), but also improves the doping concentration (ND) of the drift region by the assist depletion effect of the high‐K dielectric, further optimizing the forward conduction characteristics. Simulation results demonstrate that when compared to the conventional TMOS, the INHK‐TMOS using HfO2 exhibits a 52.6% reduction in VTH, a 52.1% reduction in Ron,sp, a 20.3% increasement in BV and a 202.3% improvement in figure of merit.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Jiangsu Provincial Key Research and Development Program
Publisher
Institution of Engineering and Technology (IET)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献