A novel WDOB‐based strategy endows droop‐controlled grid‐forming converters better dynamic and static performance in DC microgrids

Author:

Xie Wenqiang1ORCID,Zheng Xian1,Shi Mingming1,Sun Tiankui1

Affiliation:

1. Distribution Network Technology Center State Grid Jiangsu Electric Power Co. Ltd. Research Institute Nanjing China

Abstract

AbstractThe droop control strategy is popularly employed in DC microgrids. However, its virtual resistance will cause voltage deviation and reduce transient response. The DOB‐based method is proven to improve transient response in literature. However, it is analyzed in this study that this method will negatively influence the current sharing when employed in droop control. A weakened disturbance observation (WDOB) is proposed in this work to improve the drawbacks. To employ the proposed method, the equivalent models of the droop controller and the physical system are separately established, and several transformations are conducted. An auxiliary compensation is added and the current loop is considered as a whole to be transmitted into the control plant, making the traditional DOB method successfully adopted. It is obvious that the dynamic performance is improved, but it disabled virtual resistance in the steady‐state. And the current sharing cannot be achieved in a multi‐converter parallel system. The reason for this problem is analyzed from the control process and transfer function, and the WDOB solution is finally proposed. Through the proposed method, both aims of improving dynamic response and current sharing can be achieved, and the steady voltage deviation is much less than that of the traditional droop controller.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3