Surrogate modelling for ice accretion prediction on wind turbine blades based on support vector regression

Author:

Mao Shouyuan1ORCID,Wu Yangyang2,Zhao Liheng1,Mo Weike1

Affiliation:

1. Energy and Electricity Research Center Jinan University Guangdong China

2. Yunnan Electric Power Experimental Research Institute Yunnan China

Abstract

AbstractIce accretion poses a significant challenge, threatening the safety and operational stability of wind turbines in extreme cold weather. Accurate estimation of ice accretion is essential in minimizing this concern. Data‐driven techniques typically rely on extensive historical datasets, and simulation‐based methods may be time‐consuming. To address these challenges, surrogate modelling for ice accretion prediction is proposed, utilizing support vector regression. This surrogate model undergoes rigorous evaluation to ensure reliability. The surrogate model reduces time consumption by four orders of magnitude compared to simulation, with only a 2.5% decrease in accuracy. The analysis reveals that real‐time pitch angle adjustments, informed by both the surrogate model and meteorological data, can effectively reduce ice accretion on wind turbine blades in cold climates.

Funder

National Key Research and Development Program of China

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3