PSO‐based optimal placement of electric vehicle charging stations in a distribution network in smart grid environment incorporating backward forward sweep method

Author:

Altaf Mishal1,Yousif Muhammad1ORCID,Ijaz Haris2,Rashid Mahnoor1,Abbas Nasir1,Khan Muhammad Adnan3,Waseem Muhammad4ORCID,Saleh Ahmed Mohammed5ORCID

Affiliation:

1. U.S.‐Pakistan Centre for Advanced Studies in Energy (USPCAS‐E) National University of Sciences and Technology (NUST) Islamabad Pakistan

2. School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST) Islamabad Pakistan

3. Department of Electrical Engineering HITEC University Rawalpindi Pakistan

4. School of Electrical Engineering Zhejiang University Hangzhou China

5. Department of Electrical Engineering, Faculty of Engineering University of Aden Aden Yemen

Abstract

AbstractThe transition from conventional fossil‐fuel vehicles to electric vehicles (EVs) is critical for mitigating environmental pollution. The placement of electric vehicle charging stations (EVCS) significantly impacts the utility operator and electrical network. Inappropriately placed EVCS lead to challenges such as increased load, unbalanced generation, power losses, and reduced voltage stability. Incorporating distributed generation (DG) helps mitigate these issues by maximizing EV usage. This study focuses on optimizing EVCS and DG placement in radial distribution networks. The methodology employs a backward and forward sweep method for load flow analysis and utilizes the particle swarm optimization (PSO) algorithm to determine optimal EVCS and DG locations and sizes. This approach, validated on the IEEE‐33 bus system, outperforms existing methods. Results indicate a 2.5 times greater power loss reduction compared to simulated annealing (SA), 1.6 times better than artificial bee colony, and parity with genetic algorithm (GA). Overall, the PSO algorithm demonstrates superior optimization effectiveness and computational efficiency, showcasing 1–2.5 times better performance than other methodologies. Employing this approach yields significantly improved results, making it a promising technique for optimizing EVCS and DG placement in distribution networks.

Publisher

Institution of Engineering and Technology (IET)

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3