Affiliation:
1. Electrical Engineering Department King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Saudi Arabia
2. Electrical Engineering Department, Faculty of Engineering Minia University Minia Egypt
3. Department of Control and Instrumentation Engineering KFUPM Dhahran Saudi Arabia
4. Interdisciplinary Research Center for Sustainable Energy Systems KFUPM Dhahran Saudi Arabia
5. Department of Industrial Engineering King Khalid University Abha Saudi Arabia
Abstract
AbstractIn order to maximize the electricity supply from clean energy sources, the goal of the smart power system is to unite all renewable energy sources. The goal of the present study is to use three optimization techniques, artificial rabbits optimization algorithm (ARO), grey wolf optimizer (GWO), and whale optimization algorithm (WOA), to reduce the cost of electricity (COE) while improving the reliability of the power supply for rural areas. While using the same control variables for the optimization methods and load profile, various hybrid system configurations are explored. Photovoltaic, wind turbine, fuel cell, and electrolyser systems are all involved in the proposed hybrid renewable system. The ARO methodology is more effective than the GWO, WOA, and PSO procedures in terms of net present cost (NPC) and cost of energy (COE) generation, according to data comparing the three optimization techniques with the traditional Particle Swarm Optimization (PSO) method. The proposed ARO reached a value of COE of 0.4412$/kWh compared to 0.4438$/kWh for GWO, 0.4443$/kWh for WOA, and 0.44378$/kWh for PSO.
Publisher
Institution of Engineering and Technology (IET)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献