Techno‐economic optimization framework of renewable hybrid photovoltaic/wind turbine/fuel cell energy system using artificial rabbits algorithm

Author:

Menesy Ahmed S.1,Almomin Sajjad1,Sultan Hamdy M.2,Habiballah Ibrahim O.1,Gulzar Muhammad Majid34,Alqahtani Mohammed5,Khalid Muhammad14ORCID

Affiliation:

1. Electrical Engineering Department King Fahd University of Petroleum and Minerals (KFUPM) Dhahran Saudi Arabia

2. Electrical Engineering Department, Faculty of Engineering Minia University Minia Egypt

3. Department of Control and Instrumentation Engineering KFUPM Dhahran Saudi Arabia

4. Interdisciplinary Research Center for Sustainable Energy Systems KFUPM Dhahran Saudi Arabia

5. Department of Industrial Engineering King Khalid University Abha Saudi Arabia

Abstract

AbstractIn order to maximize the electricity supply from clean energy sources, the goal of the smart power system is to unite all renewable energy sources. The goal of the present study is to use three optimization techniques, artificial rabbits optimization algorithm (ARO), grey wolf optimizer (GWO), and whale optimization algorithm (WOA), to reduce the cost of electricity (COE) while improving the reliability of the power supply for rural areas. While using the same control variables for the optimization methods and load profile, various hybrid system configurations are explored. Photovoltaic, wind turbine, fuel cell, and electrolyser systems are all involved in the proposed hybrid renewable system. The ARO methodology is more effective than the GWO, WOA, and PSO procedures in terms of net present cost (NPC) and cost of energy (COE) generation, according to data comparing the three optimization techniques with the traditional Particle Swarm Optimization (PSO) method. The proposed ARO reached a value of COE of 0.4412$/kWh compared to 0.4438$/kWh for GWO, 0.4443$/kWh for WOA, and 0.44378$/kWh for PSO.

Funder

King Khalid University

Publisher

Institution of Engineering and Technology (IET)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3