Highly robust co‐estimation of state of charge and state of health using recursive total least squares and unscented Kalman filter for lithium‐ion battery

Author:

Li Xiaohui1ORCID,Liu Weidong1,Liang Bin1,Li Qian23,Zhao Yue23,Hu Jian4ORCID

Affiliation:

1. State Grid Tianjin Electric Power Company Marketing Service Center Tianjin China

2. Electric Power Research Institute of Tianjin Power System Tianjin China

3. Tianjin Key Laboratory of Internet of Things in Electricity Tianjin China

4. National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology Beijing China

Abstract

AbstractState of charge (SOC) and state of health (SOH) constitute pivotal factors in the efficient and secure management of lithium‐ion batteries, particularly within the context of electric vehicles. A highly‐robust co‐estimation method is proposed in this paper to accurately assess the SOC and SOH under strong electromagnetic interference environment. First, the 1‐RC equivalent circuit model is adopted and the model parameters are identified in a real‐time manner using the recursive total least‐square method to improve the accuracy and adaptivity of the battery model. Subsequently, the SOH estimation is reframed as capacity estimation and an unscented Kalman filter is designed to co‐estimate the SOC and capacity based on the battery model. The results suggest that the proposed method has strong robustness against the measurement noises on current and voltage. The average estimation errors of SOC and capacity are 1.57% and 0.11 Ahr, respectively.

Funder

State Grid Tianjin Electric Power Company

Publisher

Institution of Engineering and Technology (IET)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3