Increasing the resiliency of power systems in presence of GPS spoofing attacks: A data‐driven deep‐learning algorithm

Author:

Sabouri Mohammad1ORCID,Siamak Sara1ORCID,Dehghani Maryam1ORCID,Mohammadi Mohsen2ORCID,Asemani Mohammad Hasan1ORCID,Hesamzadeh Mohammad Reza3ORCID,Peric Vedran4ORCID

Affiliation:

1. School of Electrical and Computer Engineering Shiraz University Shiraz Iran

2. School of Mechanical Engineering Shiraz University Shiraz Iran

3. School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden

4. Munich School of Engineering Technical University of Munich Munich Germany

Abstract

AbstractThe growing use of wireless technologies in power systems has raised concerns about cybersecurity, particularly regarding GPS spoofing attacks (GSAs). These attacks manipulate GPS data, leading to modifications in the phase angle of phasor measurement units (PMUs). In this paper, a Deep‐learning GPS‐Spoofing Counteraction (DLGSC) algorithm is proposed, utilizing PMU data for GSA detection and PMU data correction. The algorithm incorporates a recurrent neural network (RNN) and a set of long short‐term memory (LSTM) units separately, for signal correction after attack detection. Unlike existing methods that struggle with simultaneous attacks or they are static methods, DLGSC tackles these challenges by leveraging deep learning techniques. By selecting appropriate features for GSA detection, DLGSC achieves accurate results. The algorithm is evaluated on standard IEEE 14‐bus and IEEE 39‐bus power systems, and its performance is compared to statistical, dynamic, and Deep Learning (DL) methods in the literature. Additionally, an experimental setup is designed to validate the algorithm in a laboratory environment. Results demonstrate the easy‐implementable DLGSC algorithm's satisfactory real‐time performance in various scenarios, such as load variations and noise, achieving over 98% accuracy. Notably, DLGSC is cable of detecting multiple GSAs on different PMUs.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3