Modelling spatiotemporal impact of flash floods on power distribution system and dynamic service restoration with renewable generators considering interdependent critical loads

Author:

Afzal Suhail12ORCID,Mokhlis Hazlie2ORCID,Illias Hazlee Azil2,Bajwa Abdullah Akram23,Mekhilef Saad24ORCID,Mubin Marizan2,Muhammad Munir Azam5,Shareef Hussain6

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering and Technology Bahauddin Zakariya University Multan Pakistan

2. Department of Electrical Engineering, Faculty of Engineering Universiti Malaya Kuala Lumpur Malaysia

3. u‐blox, Arfa Tower Nishtar Town, Lahore Pakistan

4. School of Science, Computing and Engineering Technologies Swinburne University of Technology Hawthorn Australia

5. Department of Electrical Engineering Iqra University, Main Campus Karachi Pakistan

6. Department of Electrical and Communication Engineering United Arab Emirates University Al Ain United Arab Emirates

Abstract

AbstractIn recent decades, flash floods have become more common because of climate change and are considered a substantial risk for many cities worldwide. This catastrophic natural hazard presents a significant threat to critical infrastructure in urban areas, particularly the power distribution system. As modern societies are much more dependent on electrical energy these days, it is essential and imperative to make existing distribution systems resilient against flash flooding. Although researchers in this area have proposed various algorithms to impart resilience to a distribution system, however, the focus in these works is on wind‐related events such as hurricanes, cyclones, and windstorms. Therefore, here, the spatiotemporal effects of a flash flood on the distribution system are modelled using a grid‐based hydrodynamic model. The evolving line faults are then included in the proposed resilience‐oriented time horizon‐based service restoration model that also considers dynamic load demand, heavy uncertainties related to renewable generation, and interdependence among critical loads. Finally, the resilience of the distribution system's response is assessed using an operational resilience metric. The efficacy of the proposed framework is evaluated on IEEE 33‐bus and 69‐bus systems and the results show that the model provides an efficient restoration solution despite increased complexity caused by varying conditions.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3