On design of power sharing for VSC‐based islanded AC microgrids: An adaptive MIMO controller equipped with a predictor

Author:

Ahmadi Farahnaz1,Batmani Yazdan1ORCID,Bevrani Hassan1

Affiliation:

1. Department of Electrical Engineering University of Kurdistan Sanandaj Iran

Abstract

AbstractIn an AC microgrid, the active/reactive power is usually shared among its distributed generators (DGs) based on the frequency‐active power () droop and the voltage‐reactive power () droop. By increasing the resistant/inductance ratio () of feeder lines; however, adverse effects of interactions between these two control loops are intensified. In this paper, an adaptive multi‐input multi‐output (MIMO) current control structure is proposed to tackle this problem in AC microgrids with arbitrary numbers of DGs in the primary control level. A deep analysis based on the relative gain array (RGA) matrix and the diagonal dominance concept is provided to systematically design MIMO controllers. The proposed technique is based on the Lyapunov's stability theory, and the asymptotic stability of the whole microgrid is guaranteed. For each DG, the suggested design procedure is started by defining a model reference in which the desired control objectives, including the settling time and the steady‐state error, are considered. Then, a feedback‐feedforward controller is established where its gains are adaptively tuned by some rules derived from a Lyapunov function. Moreover, a predictor is used to estimate the adverse effects of other DGs which are taken into account as external disturbances during the design process of the adaptive controller. By considering some realistic scenarios through time‐domain simulations in MATLAB/SIMULINK, it is shown that the proposed strategy can be successfully used to solve the power sharing problem in AC microgrids.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3