An improved cascade RCNN detection method for key components and defects of transmission lines

Author:

Dong Chao1ORCID,Zhang Ke12ORCID,Xie Zhiyuan13,Shi Chaojun12

Affiliation:

1. Department of Electronic and Communication Engineering North China Electric Power University Baoding Hebei China

2. Hebei Key Laboratory of Power Internet of Things Technology North China Electric Power University Baoding Hebei China

3. Technology Innovation Center for Transformers of Hebei Province Baoding Hebei China

Abstract

AbstractOverhead transmission line detection based on deep learning of aerial images taken by UAVs has been widely investigated. Despite its success, it is limited by several factors, including inappropriate evaluation criteria and dramatic scaling of components in the images. To mitigate these issues, a relative mean Average Precision evaluation index is proposed to accurately measure the model's detection performance for smaller objects. A data enhancement strategy including multi‐scale transformation is adopted to alleviate the problem of drastic scaling. The existing Cascade RCNN target detection technology is enhanced by incorporating Swin‐v2 and a balanced feature pyramid to improve feature characterization capabilities, while side‐aware boundary localization is utilized to improve the positioning accuracy of the model. Experimental results demonstrate that the proposed method outperforms state‐of‐the‐art methods on CPLID and achieves 7.8%, 11.8%, and 5.5% higher detection accuracy than the baseline for mAP50, relative small and medium mAP, respectively. Additionally, the paper discusses the influence of adopted data enhancement on the robustness of the model.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3