A novel circuit breaker fault diagnosis method based on dense residual and attention mechanism

Author:

Ye Xinyu12ORCID,Yan Jing1,Wang Yanxin1ORCID,Yuan Shiyi1,Wang Jianhua1,Geng Yingsan1

Affiliation:

1. State Key Laboratory of Electrical Insulation and Power Equipment Xi'an Jiaotong University Xi'an Shaanxi Province China

2. State Grid Chongqing Electric Power Company Shibei Power Supply Branch Chongqing China

Abstract

AbstractIn recent years, deep learning‐based fault diagnosis technology for high‐voltage circuit breakers (HVCB) has advanced significantly, but the working environment of HVCBs is complex, resulting in unsatisfactory fault diagnosis results of HVCBs in noisy environment and existing deep learning methods are difficult to solve this problem. This paper proposes a multi‐channel convolutional neural network combines dense residual structure and attention mechanism to achieve high‐precision and high‐robust diagnosis of HVCBs in noisy backgrounds. A dense residual network is introduced into the convolutional neural network to prevent feature loss during network propagation to preserve the difference information between the network layers as much as possible, Simultaneously, a channel attention mechanism is introduced to adaptively adjust the weights of different convolution channels. The model can extract multi‐scale features from the original signal and fully exploit the intrinsic relationship between the vibration signal and the HVCB's operating state. The experimental results show that the diagnostic method can still meet the requirements of fault diagnosis in the presence of noise, with an average diagnostic accuracy rate of 85.92% when the signal‐to‐noise ratio is −4. The model outperforms the traditional single‐channel model in terms of diagnostic accuracy and stability.

Publisher

Institution of Engineering and Technology (IET)

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machinery Fault Diagnoses in High-Voltage Circuit Breakers Using Empirical Mode Decomposition-Support Vector Machine Model;2024 Third International Conference on Distributed Computing and Electrical Circuits and Electronics (ICDCECE);2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3